
J .  Fluid Mech. (1980), vol. 100, part 1, pp .  111-128 

Printed in Cheat Britain 
111 

Numerical analysis of unsteady secondary vortices generated 
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The mechanism of the creation of secondary vortices behind an impulsively started 
circular cylinder is analysed in this paper by a higher order of accuracy numerical 
method. This is a combination of second-order and fourth-order compact finite 
difference schemes to resolve complete unsteady Navier-Stokes equations. The fourth- 
order compact scheme is used to calculate the Poisson equation of the stream function 
and the second-order alternating direction implicit scheme to resolve the vorticity 
transport equation. 

In  particular, the growth of primary and secondary vortices with time is analysed 
for Reynolds numbers equal to 300, 550 and 1000. A single secondary vortex first 
appears at a Reynolds number equal to 300 on the surface of the cylinder. At R = 550, 
this creation is found numerically at dimensionless time t about 2.85, and this single 
secondary vortex is transformed into a pair of secondary vortices a t  t about 5. For 
R = 1000, two single vortices can be observed a t  t about 2.5, one near the separation 
point and another more important, easily identified in flow structure. These secondary 
vortices are transformed into a pair of secondary vortices at  t about 4.5. 

A numerical analysis of the influence of the grid systems and the time step is also 
given. All numerical results presented here are compared with experimental visual- 
izations. The comparison is found satisfactory. 

1. Introduction 
Theoretical works on the problem of viscous flow past a circular cylinder, which is 

started impulsively from rest with constant velocity, fall into two main classes. 
First, the flow for small times, before the appearance of the wake, may be studied 

using boundary-layer theory. Blasius (1908), Goldstein & Rosenhead (1936), Schuh 
(1953), Wundt (1955) and Watson (1955) have all considered this problem as the 
limiting case of infinite Reynoldsnumber. Wang (1967) and Collins & Dennis (1973a, b )  
have extended the work to finite but high values of Reynolds numbers. The results 
however only indicate the flow structure for small times after starting. 

The second class is that of purely numerical solutions of the Navier-Stokes 
equations and these are, on the whole, valid for ‘any’ value of the Reynolds number. 
Thorn (1933) gave the first numerical solution of steady Navier-Stokes equations 
corresponding to the viscous flow around a circular cylinder, The unsteady flow was 
first studied by Payne (1958) for Reynolds equal to 40 and 100. Kawaguti & Jain 
(1966), Son & Hanratty (1969), Jain & Rao (1969), Thoman & Szewczyk (1969), 
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FIGURE 1 .  Schematic diagrams of the problem. 

Dennis & Staniforth (1971), Collins & Dennis (1973a, b ) ,  Pate1 (1976) and Daube & Ta 
Phuoc LOC (1978) have investigated this problem for different Reynolds numbers. 
The common points of interest of these works axe the development of the primary 
unsteady wake length behind the cylinder, and the evolution in time of the drag 
coefficient and the separation angle. 

Besides these theoretical and numerical investigations, some experimental visual- 
izations have been described by Honji & Taneda (1969), Taneda (1972) and recently 
by Coutanceau & Bouard (1977, 1979). A number of properties of the development of 
the unsteady wake have been studied and, in particular, the length of the pair of 
standing eddies formed behind the cylinder and the separation angle have been 
measured as a function of time for various values of R. The delicate problem of the 
formation of the secondary vortices has been also analysed. 

If the comparison between experimental data and previous numerical results has in 
general shown agreement for Reynolds numbers up to 100, a discrepancy exists for 
greater Reynolds numbers, especially on the appearance of secondary vortices. 

One of the objects of the present paper is to give a higher-order accurate numerical 
treatment for the analysis of the secondary vortices for Reynolds numbers equal to 
300, 550 and 1000. Numerical results presented here are compared with experimental 
visualizations, and the agreement is found to be satisfactory. 

Finally, this study shows that the divergence form of the transport equation of the 
vorticity is recommended in this problem for high Reynolds numbers. 

2. Equations of motion and boundary conditions 

circular cylinder of radius a with a constant velocity U, (see figure 1). 

and vorticity-dependent variables are 

Let us consider the unsteady laminar flow of a viscous incompressible fluid past a 

The unsteady Navier-Stokes equations in polar co-ordinates with stream-function 

and 

where (P, 8) are the polar co-ordinates, v the kinematic viscosity, Z the time. 
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The variables $ and 0 are defined by 

If we write p = aenc, 8 = nq, t = U,Z/a, 

&a $=- 6 w = -  2U a R=” 
v >  Urn a’ urn’ 

equations (1) and (2) can be written in dimensionless form 

with 

To complete the system (3),  (4), boundary conditions given by the physical problem 

(i) no slip condition on the surface of the cylinder; 
(ii) potential flow at infinity. 

are : 

These conditions can be written in stream function and vorticity formulation as: 

(No condition for w ,  I 
1/. = 2 sinh ntsin ny, 

w = 0, 
t 2 0, 

Equation (4) also gives 

this condition is necessary in the fourth-order compact numerical algorithm and 
allows us to determine the boundary condition for w on the surface of the cylinder. 

3. Numerical method 
The method used is a combination of two numerical schemes, a fourth-order com- 

pact method for the resolution of the Poisson equation of stream function, and a 
second-order one for the calculation of the vorticity transport equation. This so-called 
combined method has been recently proposed by Ta Phuoc Loc & Daube (1977). 

3.1. Outlines of the compact fourth-order scheme 

It is a compact Hermitian finite-difference scheme. The fourth-order accuracy is 
achieved with a three-point approximation and by the introduction of the first and 
second derivatives of the unknown variables as the new unknowns of the problem. 
This technique has been proposed by Collatz (1966) and Kreiss (see Orszag & 
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Israeli 1974) and developed recently by Hirsh (1975) in the resolution of some prob- 
lems of fluid mechanics. 

Let us call h the spatial step of discretization, and fi, f i and f: the values of the func- 
tion f and its first and second derivatives a t  node i. The following tridiagonal relations 
can be written: 

3 
(8 )  f L +  Y +fi+l = ~(fi+~-fi-J + W4), 

It appears, consequently, that one must impose boundary conditions not only for the 
unknown f ,  but also for its first and second derivatives. Therefore, if N is the number of 
the grid nodes, we usually have 3N equations for 3N unknowns to be resolved, when 
trying to solve a second-order differential equation. 

3.2. Resolution of the Poisson equation of the stream function 

The compact higher-order method is chosen for the calculation of the Poisson 
equation. The finite-difference equations obtained by discretization of the equation 
(4) and the tridiagonal relations (8) and (9)  are resolved by a technique derived 
from the alternating direction implicit (A.D.I.) scheme. 

Besides higher accuracy, another advantage of this method over the classical 
second-order methods lies in the possibility of simultaneously taking into account the 
boundary conditions on $ and $' which are data of the physical problem. 

In  equation (4) only $ and its second derivative appear. Consequently, by using 
relation (9) we can write for each step of the ( k  + 1)th iteration of the A.D.I. technique, 
the following system : 

and 

12 azp k+l az+ k+l 
- ( $ f ~ ~ j - 2 + f ~ 1 + p f ~ ~ j ) - ( ( ~ ) k + 1  i-lj +lo(-)  a t z  ij +(-) a t z  i i l j  ) = 0, (13) 

where h k h  and A,, are optimum coefficients of relaxation of the A.D.I. technique. 
Boundary conditions are very simple since $ is known on the boundary and its 

second derivatives can be expressed in terms of vorticity function by equation (7). 
For each line i = constant or j = constant, we have to solve 8 2N x 2 N  blocks 

tridiagonal system which, in fact, easily reduces to a N x i ?  tridiagonal system 
solved by the factorization algorithm. 

Once the new values of $M1 of the stream function have been computed, by the 
tridiagona,l relation (S), first derivatives (a+/at)?t1 and (i3@/8v)?j+' are calculated on 
each line i and j. 
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3.3. Resolution of the vorticity transport equation 

A second-order accurate scheme has been chosen to solve this equation. This choice is 
motivated by the research of simplicity in checking boundary conditions and by the 
possibility to use the divergence form of Navier-Stokes equations and the first- or 
second -order upwind approximation of transport terms. 

Also, it is important to note that, whatever the method used, boundary conditions 
for w are always determined from the knowledge of @ and its derivatives. A 'better 
accuracy' for the computation of @ is then needed. 

As for the treatment of the Poisson equation of the stream function, the A.D.I. 
algorithm has been used for the vorticity transport equation. Each dimensionlese 
time-step At is decomposed in two successive half-step with a second-order accuracy. 

Let n be the index of the nth time-step, we have the following expression: 

and 

Here u and v are the components of the velocity, calculated from the values of $ a t  
instant n. The total order of accuracy of this scheme is O((A<)2, ( A Y ) ~ ,  At). 

A second-order approximation is used to  determine the value of the vorticity a t  the 
boundary. From equation (4) we can write: 

6 
29(0, 7) @(0,7) +s(A!5 7) (4A5 '7)  = (ag)2 (!w, 7) - @.(&57))* (16) 

3.4. Accuracy 

The accuracy of this method in the numerical calculation of Navier-Stokes equations 
has been studied by Ta Phuoc Loc & Daube (1978) and by Roux et al. (1979). Several 
external and internal test problems have been considered and a comparison has been 
made between present combined method and a complete fourth order method used by 
Hirsh (1975). It appears that  in the driven cavity problem and in the analytical 
problem suggested by Pearson (1965), the combined method gives, for a same grid 
system, an acciiracy comparable to that obtained with a complete fourth-order one. 
However, an important advantage of the present method is the possibility to avoid 
high-frequency oscillations of higher-order numerical method when solving high- 
Reynolds-numbers problems. 



116 Ta Phuoc Loc 

4 

3 

$ 2  

1 

0 2 4 6 8 
I 

FIGURE 2. Evolution with time of the drag coefficient CD and the main vortex 
length L for R = 300. 

4. Results 
The numerical calculations have been made on a UNIVAC 1110 computer. For 

each Reynolds number two formulations, divergence and convective forms, of the 
transport terms of the vorticity equation are considered. Results obtained on the 
evolution with time of the flow pattern, the drag coeEcient, t he  distribution of 
vorticity a t  the cylinder surface are reported for Reynolds numbers equal to 300, 550, 
1000. A comparison between experimental data and numerical results is also realized. 

4.1. R = 300 

For R = 30O,agridsystemof41 x 41 nodesisadopted(A7 = 1/40;A[ = 0.954/40).The 
dimensionless time-step is taken equal to 0.05. The C.P.U. time for each time-step is 
equal about 0.95 s. 

In  figure 2, the results of time evolution of the length of the main vortex and the 
drag coefficient are shown. The radial velocity on the symmetry axis behind the 
cylinder presented in figure 3 is to be compared with experimental measures. We can 
note the existence of values of the velocity modulus greater than 1 in the primary 
vortex. The distribution of the vorticity a t  the cylinder surface, given in figure 4 
permits to determine the moment of the appearance of a secondary vortex which is 
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FIGURE 3. Evolution with time of the radial velocity on the symmetry axis 
behind the cylinder for R = 300. 
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FIGURE 4. Evolution with time of the vorticity distribution a t  the cylinder surface for R = 300. 

about t = 3.5. The development of the flow structure with time is shown in figure 5 .  A 
comparison with experimental visualization, for t = 6, of the flow pattern obtained by 
numerical treatment is given in figure 6 (plate I ) .  At this Reynolds number only a 
single secondary vortex is observed. 
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FIGURE 5. Streamlines showing the evolution with time of the flow pattern for R = 300. 

4.2. R = 550 

For this Reynolds number two experimental visualizations have been realized, by 
Honji & Taneda (1969), and recently by Coutanceau & Bouard (1979). They have 
observed the presence ofa pair of secondary vortices at  t about 5. 

Numerical results reported by Pate1 (1976), Collins & Dennis (1973a, b) and Son & 
Hanratty (1969) point out only the appearance of a single secondary vortex, and an 
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FIGURE 7. Evolution with time of the drag coefficient CD and the main vortex length L for 
R = 550 with a grid system of 61 x 61 nodes. 

FIGURE 8. Evolution with time of the radial velocity on the symmetry axis behind the 
for R = 550 with a grid of 01 x 61 nodes. 

cylinder 
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FIGURE 9. Evolution with time of the vorticity distribution a t  the cylinder surface for R = 550. 

important discrepancy between experimental data and numerical results can be 
observed. 

However, results presented in this paper can be compared with a reasonable 
agreement to experimental visualization. 

The grid system of 61 x 61 nodes is used for this Reynolds number (AT = 1/60; 
A t  = 0.954160). The time-step of 0.033 s is adopted. The time evolution of the length 
of the main vortex and of the drag coegcient is reported in figure 7 .  We can note that 
the time necessary to obtain the same value of the wake length is greater for R = 550 
than for R = 300. The radial velocity on the symmetry axis behind the cylinder is 
shown in figure 8. We can note that the velocity modulus in the main vortex becomes 
more important and exceeds I at t = 5. The variation in time of the distribution of the 
vorticity a t  the cylinder surface described in figure 9 indicates that a single secondary 
vortex appears a t  t = 2.85. The area of this single vortex increases with time and a 
pair of secondary vortices can be observed at t = 5 as shown in the figure 11.  This 
phenomenon is not pointed out by previous authors in their numerical results. In figure 
I0 the development of the flow structure is given. A comparison between experimental 
visualization and present numerical results is shown in figure I1 (plate 2): the agree- 
ment is found to be close enough. 

4.3. R = 1000 

Because of stability conditions and for accuracy, a grid of 81 x 41 nodes is chosen, with 
a time step of 0.025 for this Reynolds number. The C.P.U. time for each time step is 
now equal to 1-90 s. The time evolution of the drag coefficient and the wake length is 
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FIGURE 10. Streamlines. Evolution with time of the flow pattern for R = 550. 

presented in figure 12. The time necessary to  obtain the same value of wake length is 
greater for R = 1000 than for R = 550. This observation has also been pointed out 
experimentally by Coutanceau & Bouard (1979). The radial velocity on the symmetry 
axis behind the cylinder is given in figure 13 and can be compared to  experimental 
measurements. The values of the velocity modulus greater than 1 can again be observed 
in the wake at t about 4.8. The repartition of the vorticity on the cylinder surface, 
permitting the determination of the moment of the appearance of a secondary vortex, 
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FIGURE 12. Evolution with time of the drag coefficient C, and the main vortex 
length L for R = 1000. 
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FIGURE 13. Evolution with time of the radial velocity on the symmetry axis 
behind the cylinder for R = 1000. 
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FIGURE 14. Evolution with time of the vorticity distribution a t  the cylinder surface for R = 1000. 

is given in figure 14. At t = 3, we can observe two secondary vortices. The first one is 
localized near the separation point and the second one, of greater intensity and area, is 
identified easily in the flow pattern. These secondary vortices are transformed into a 
pair of secondary vortices with a small single vortex near the separation point at  t equal 
about 4-5. This phenomenon has also been pointed out experimentally by Honji & 
Taneda (1969) and recently by Bouard & Coutanceau (1979, private communication). 
The development of the flow structure with time is described in figure 15. At t = 5 we 
can note the importance of the main pair of secondary vortices. 

4.4. Influence of the grid system 

Three grid systems and three values of time-step are considered for the ReynoIds 
number equal to 550. The relation (16) shows that the vorticity distribution on the 
cylinder surface depends strongly on the radial step discretization At .  

The first calculation is made with a grid of 41 x 41 nodes (AT = 1/40; A[ = 0.954/40; 
At = 0-05), thesecondonewithagridof51 x 51 (AT = 1/50; A( = 0-954/50;At = 0.04) 
and the third one with a grid of 61 x 61 nodes (AT = 1/60; A[ = 0*954/60; At = 0.03). 
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FIGURE 15. Streamlines. Evolution with time of the Aow pattern for R = 1000. 

If some difference is observed on the vorticity repartition on the cylinder surface and 
consequently on the drag coefficient, the flow structure changes slightly as shown in 
figure 11. We can note the appearance of secondary vortices a t  the same time in all 
cases. It is important to remark that the time step is different for each calculation. 

In figures 16 and 17, the evolution of the drag coefficient, the length of the main 
vortex and the radial velocity on the symmetry axis are reported for these three grid 
systems. We can see that no important difference on the velocity and on the wake 
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FIGURE 16. Influence of the grid systems and of the time step on the drag coefficient CD and 
the main vwtex length L for R = 550 with various grid systems: - , 41 x 41 nodes; - 
51 x 51 nodes; ---, 61 x 61 nodes. 
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FIGURE 17. Influence of the grid systems and of the time step on the radial velocity on the 
symmetry axis behind the cylinder for R = 550. See figure 16 for an explanation of the curves. 
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FIGURE 18. Evolution with time of the VQrticity distribution at the cylinder surface 
for R = 1000 with a grid system of 61 x 61 nodes. 

length is observed between the 51 x 51 nodes grid system and the 61 x 61 nodes one. 
The grid of 61 x 61 nodes can be considered as suficient for Reynolds number of 550. 

For Reynolds number equal to 1000, two grid systems are used (41 x 81 and 61 x 61). 
The relative importance of the spatial discretization in y and directions is analysed. 
With a same value of A( = 0.954/60, two values of AT and At are considered (Ay = 1401 ; 
At = 0.025; Ay = 1/60; At = 0.0166). The vorticity distribution on the cylinder 
surface, given in figure 18, shows a relative importance of Ay discretization compared 
with A t  discretization because of the relation (16). Results obtained with these two 
grid systems do not present any difference. 

Finally, in figure 19, a comparison between numerical results obtained by divergence 
form or convective form of the transport terms of Navier-Stokes equations shows that 
it is better to use the divergence form rather than the convective form for high- 
Reynolds-number calculations. 
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Divergence form 

Convective form 
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FIGURE 19. Comparison between numerical results given by convective and divergence forms 
of the transport terms of the vorticity equation. 
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5. Conclusion 
The complex problem of unsteady viscous flow around a circular cylinder has been 

studied in detail in this paper. Some properties on the creation and the development of 
the primary and secondary vortices are made evident and are verified by experimental 
data. 

Moreover, results presented here demonstrate, first, the utility of the use of the 
divergence form of the transport terms in the numerical integration of Navier-Stokes 
equations, secondly, the accuracy and the eeciency of the combined second- and 
fourth-order compact numerical method in unsteady flow analysis. 

The author acknowledges the many helpful comments and suggestions of the 
referees. 
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